Aby zająć się rodzajami pamięci, należy najpierw zastanowić się nad budową pamięci DRAM. Pamięci tego typu wymagają okresowego odświerzania (ang. refresh) ze względu na to, że nośnikiem informacji są kondensatory (a dokładnie tranzystory polowe Denarda) [3], które samoistnie rozładowują się. Odświeżanie polega na odczytaniu i zapisaniu tej samej informacji. Ponadto odczyt z pamięci DRAM jest niszczący (informacja jest kasowana w wyniku rozładowania kondensatora przez współpracujący z nim tranzystor), dlatego też należy powtórnie zapisać odczytane dane tak, aby nie uległy zmianie.

FPM RAM (ang. Fast Page Mode RAM) jest najstarszym rodzajem pamięci. Jest to pamięć typu asynchronicznego, w której sygnały sterujące matrycą komórek pamięci (sygnały te to: RAS: Row Adress Strobe - wybór wiersza matrycy pamięci oraz CAS: Column Adress Strobe - wybór kolumny matrycy pamięci) generowane są niezależnie od taktów zegara. Tak więc, informacja na wyjściu ukazuje się po czasie wynikającym z konstrukcji układu. Dodatkowo, występują problemy ze zsynchronizowaniem się taktów zegara systemowego i taktów pamięci [3].

Termin "Fast" odnosi się do faktu, iż pamięci te umożliwiają szybszy dostęp do danych znajdujących się na jednej stronie pamięci. Niegdyś pamięci te były montowane "na pokładzie" 386-óstek i 486-óstek w postaci 72-pinowych modułów SIMM (ang. Single In-line Memory Module).

[Porównanie SIMM i DIMM]

Rysunek 2.7. Porównanie pamięci typu SIMM i DIMM

Pamięć SDRAM (ang. Synchronous DRAM), podobnie jak pamięć typu FPM, jest pamięcią typu DRAM. Pamięć ta pracuje z częstotliwością zewnętrznej magistrali systemowej (a więc synchronicznie) i charakteryzuje się czasem dostępu rzędu 10 ns. SDRAM-y wyróżnia ponadto wysoka teoretyczna przepustowość danych - 800 MB/s dla kości typu PC-100 i 1064 MB/s dla PC-133 [3]. Pamięci SDRAM są wykonywane w postaci 168-pinowych modułów DIMM (ang. Dual In-line Memory Module), obecnie zasilanych napięciem 3,3 V. Pamięć DDR SDRAM (ang. Double Data Rate DRAM) jest ulepszoną wersją swojej poprzedniczki. Ulepszenie polega na możliwości przesyłania danych na obydwu zboczach sygnału zegarowego. Charakteryzują się bardzo dużą przepustowością - 2.1 GB/s dla DDR SDRAM pracujących efektywnie z częstotliwością 266 MHz.

Podwojenie częstotliwości pracy nie jest jedyną nowinką związaną z pamięciami DDR. Pamięci tego typu posiadają usprawniony mechanizm synchronizacji oraz buforowania danych. Pamięć DDR wykonana jest w postaci 184-pinowych modułów DIMM.

Obecnie, trwają prace nad pamięciami DDR-II, które będą wykonane w technologii 0,13 mikrona i oferować będą przepustowość 6,4 GB/s przy częstotliwości 800 MHz. Pamięci RDRAM (ang. Rambus Direct RAM) są układami podobnymi do pamięci DRAM. W układach tych matryca pamięci jest podzielona na 8 niezależnych bloków. Każda z części jest odczytywana z pewnym opóźnieniem, wynikającym z częstotliwości zegara. W jednym takcie zegara jest więc odczytana informacja z pojedynczego bloku. Przy kolejnych cyklach pobierane są kolejne dane i dopiero po odczytaniu wszystkich bloków, dane wysyłane są na zewnątrz w postaci pojedynczego pakietu (patrz rysunek 2.7) [3].

[Częściowo sekwencyjny odczyt]

Rysunek 2.8. Pobieranie danych z poszczególnych banków przez pamięci Rambus [3]

Ważną zaletą pamięci RDRAM jest fakt, że umożliwiają one duże transfery - 1,6 GB/s dla pamięci współpracującej z 16-bitową szyną danych z częstotliwością 400 MHz (efektywnie 800 MHz - informacje przesyłane są na obu zboczach sygnału zegarowego). Podwojenie kanału Rambus (do którego wsparcie oferuje chipset i840) daje przepustowość 3,2 GB/s. Olbrzymia przepustowość pamięci Rambus spowodowała wydłużenie czasu dostępu do danych.

Z wytwarzaniem pamięci RDRAM wiąże się wiele problemów technologicznych, jak np. eliminacja efektu linii długiej, zakłócającego poprawność przesyłania informacji [3]. Wymusza to rezygnację z możliwości zainstalowania więcej niż dwóch modułów pamięci RDRAM na płycie głównej. Pamięć RDRAM wytwarzana jest w postaci modułów RIMM (ang. Rambus In-line Memory Module).

NASTĘPNA